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(57) ABSTRACT

A programming element is provided that defines model
attributes in response to mode change events in a graphical
modeling environment. Such definition may involve any sig-
nal attribute such as dimensions, data types, complexity and
sample times. Events that trigger definition of model
attributes may be explicit signaling events generated by other
elements, elements within the block diagram programming
environment, and elements external from the environment.
Implicit events may also trigger definition of model attributes,
such as a change of attribute in an input signal.
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1
MODE-SWITCHED VARIABLE SIGNAL
ATTRIBUTES IN BLOCK DIAGRAMS

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/252,536, filed Oct. 16, 2008, now U.S. Pat.
No. 8,286,129, which claims priority under 35 U.S.C. 119(e)
to U.S. Provisional Application Ser. No. 60/980,403, entitled
“MODE-SWITCHED VARIABLE SIGNAL ATTRIBUTES
IN BLOCK DIAGRAMS,” by Ramamurthy Mani, filed Oct.
16, 2007. The above-noted applications are incorporated
herein by reference in their entirety.

BACKGROUND

Various classes of block diagrams may be used to describe
computations that can be performed on application specific
computational hardware, such as a computer, microcontrol-
ler, FPGA, and custom hardware or general purpose hardware
such as a commercially-available computer system or micro-
processor. Classes of these block diagrams can include time-
based block diagrams, such as those implemented within
graphical modeling environments, state-based and flow dia-
grams, and data-flow diagrams. Graphical modeling environ-
ments such as block diagram programming environments
generally permit a user to define and use graphical elements to
represent system behavior. These elements may be, in one
example, elements that are interconnected graphically to cre-
ate a representation of a modeled system.

Graphical modeling environments (e.g., as provided by
graphical programming tools) may assist in simplifying the
process of designing, simulating, and implementing dynamic
systems. Tools provided in such modeling environments may
permit a user to create a graphical representation of a system,
such as a time-based block diagram representation, a statis-
tical diagram, a timing diagram, and other similar graphical
elements that can be used to describe system behavior.

SUMMARY

According to one aspect, a computer-readable medium is
provided comprising computer-executable instructions that
when executed on a processor propagate attributes in a
graphical model. The medium includes instructions for dis-
playing a graphical model representing a system configured
to operate using a first behavior, the graphical model com-
prising a first element having a first attribute, a second ele-
ment, and instructions for associating a mode switching event
with the first element. The medium further includes instruc-
tions for propagating the first attribute within the first ele-
ment, or propagating the first attribute from the first element
to the second element in response to the mode switching
event, and instructions for executing the graphical model
using the propagated first attribute to produce an execution
result that reflects a second behavior of the graphical model.

According to one embodiment, the at least one attribute
comprises at least one signal attribute that includes at least
one of a signal dimension, a signal data type, a signal com-
plexity or a signal sample time. According to one embodi-
ment, the medium further comprises instructions for selec-
tively resetting a state associated with the at least one element
in response to the propagating the at least one attribute.
According to another embodiment, the mode switching event
includes an explicit event or an implicit event.

According to another embodiment, the mode switching
event is generated by at least one of a state transition diagram,
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2

a discrete event diagram, or a block diagram. According to
another embodiment, the first element includes at least one
port, and wherein the mode switching event is in response to
achange in attribute of a received signal associated with the at
least one port. According to another embodiment, the graphi-
cal model includes at least one of a time-based block diagram
or a dataflow diagram.

According to one embodiment, the medium further com-
prises instructions for indicating that the at least one element
propagates the at least one attribute in response to the mode
switching event. According to one embodiment, the medium
further comprises instructions for receiving a flag, the flag
indicating that the first element can process the mode switch-
ing event.

According to another embodiment, the first element
includes at least one input port and at least one output port,
and wherein the first attribute is a dimension, and wherein the
computer-readable medium further comprises instructions
for receiving a map defining at least one constraint, the con-
straint identifying a dimension of the at least one input port,
the dimension used to determine a dimension of the at least
one output port, and instructions, responsive to a selection of
the at least one constraint, for setting the dimension of the at
least one output port based on the selected at least one con-
straint.

According to another aspect, a computer-readable medium
is provided comprising computer-executable instructions that
when executed on a processor modify an operating mode for
a system. The medium includes instructions for operating the
system in a first mode having a first set of behavior, instruc-
tions for receiving a mode switching event, instructions for
operating the system in a second mode having a second set of
behavior based on the received mode switching event, and
instructions, responsive to receiving the mode switching
event, for executing the instructions for operating the system
in the second mode.

According to one embodiment, the computer-executable
instructions are generated from a graphical model represent-
ing a modeled system. According to another embodiment, the
graphical model comprises a first element having a first
attribute and a second element, and wherein the computer-
readable medium further holds instructions for associating
the mode switching event with a first element of the graphical
model, and instructions for propagating the first attribute
within the first element, or propagating the first attribute from
the first element to the second element in response to the
mode switching event.

According to another embodiment, the first set of behavior
is operable to permit the system to process a first set of
conditions by the system, and wherein the second set of
behavior is operable to permit the system to process a second
set of conditions by the system. According to another embodi-
ment, the instructions responsive to receiving the mode
switching event are executed by the system at runtime.

According to another embodiment, the graphical model
comprises a first element including at least one input port and
at least one output port, and wherein the computer-readable
medium further comprises instructions for receiving a map
defining at least one constraint, the constraint identifying a
dimension of the at least one input port, the dimension used to
determine a dimension of the at least one output port, and
instructions, responsive to a selection of the at least one
constraint, for setting the dimension of the at least one output
port based on the selected at least one constraint.

According to another embodiment, the graphical model
comprises a first element having a first attribute, and wherein
code associated with the first element is responsive to the
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received mode switching event. According to another
embodiment, the code associated with the first model is
capable of propagating the first attribute in response to the
received mode switching event. According to another
embodiment, the code is adapted to propagate the first
attribute during execution of the code.

According to another aspect, a system is provided compris-
ing a memory configured to store code representing a graphi-
cal model representing a modeled system, the graphical
model having at least one element having associated code that
is configured to propagate, through the element or to another
element, at least one attribute associated with a port of the
element, and a processor configured to execute the code, and
responsive to a mode switching event, propagates the at least
one attribute. According to one embodiment, the system oper-
ates in a first mode having a first set of behavior, and in
response to receiving the mode switching event, the system
operates in a second mode having a second set of behavior.
According to another embodiment, the mode switching event
is in response to a change in attribute of a received signal
associated with the port of the element.

According to another aspect, a computer-readable medium
is provided comprising computer-executable instructions that
when executed on a processor determine attributes in a
graphical model. The medium includes instructions for dis-
playing a graphical model representing a system configured
to operate using a first behavior, the graphical model having a
fixed model variable access structure and comprising a first
element having a first attribute, a second element having a
second attribute, and instructions for associating a mode
switching event with the first element, instructions for deter-
mining the second attribute to be consistent with the first
attribute, the instructions for determining being responsive to
the mode switching event, instructions for executing the
graphical model using the determined second attribute to
produce an execution result that reflects a second behavior
according to the second attribute of the graphical model.

According to one embodiment, the fixed model variable
access structure is a fixed read structure. According to another
embodiment, the fixed model variable access structure is a
fixed write structure. According to another embodiment, the
fixed model variable access structure is a fixed read and write
structure. According to another embodiment, the fixed model
variable access structure is a fixed compile-time structure.
According to another embodiment, the instructions for deter-
mining propagate the first attribute to the second attribute.
According to another embodiment, the instructions for deter-
mining further comprise instructions for solving at least one
constraint associated with the first attribute and at least one
constraint associated with the second attribute.

According to one embodiment, the at least one constraint
associated with the first attribute and the at least one con-
straint associated with the second attribute are related.
According to another embodiment, the at least one constraint
associated with the first attribute and the at least one con-
straint associated with the second attribute are a same con-
straint. According to another embodiment, the first element
and the second element are not directly connected. According
to another embodiment, the first element and the second
element are connected via a nondirect feedthrough element.
According to another embodiment, the nondirect feedthrough
element comprises an input and an output, and wherein the
nondirect feedthrough element does not have a direct rela-
tionship between the input and the output. According to
another embodiment, the nondirect feedthrough element
includes at least one of a group comprising a delay element, a

10

15

20

25

30

35

40

45

50

55

60

65

4

pre element, a shift element, and a memory element. Accord-
ing to another embodiment, the nondirect feedthrough ele-
ment includes a filter block.

According to another embodiment, the instructions for
determining the second attribute include instructions that per-
mit the user to define a process by which the second attribute
is determined. According to another embodiment, the com-
puter-readable medium further comprises instructions that,
when executed, display to a user an option to select a func-
tionality that determines the second attribute responsive to the
mode switching event. According to another embodiment, the
at least one attribute comprises at least one signal attribute
that includes a signal dimension. According to another
embodiment, the at least one attribute comprises at least one
signal attribute that includes a signal data type.

According to one embodiment, the at least one attribute
comprises at least one signal attribute that includes a signal
complexity. According to another embodiment, the at least
one attribute comprises at least one signal attribute that
includes a signal sample time. According to another embodi-
ment, the at least one attribute comprises at least one signal
attribute that includes a signal invocation specification.
According to another embodiment, the computer-readable
medium further comprises instructions for selectively reset-
ting a state associated with the at least one element in
response to the instructions for determining the at least one
attribute.

According to another embodiment, the mode switching
event includes an explicit event. According to another
embodiment, the mode switching event includes an implicit
event. According to another embodiment, the mode switching
event is generated by at least one of a state transition diagram,
a discrete event diagram, a block diagram, a dataflow dia-
gram, sequence diagram, scenario diagram, truth table, state
transition matrix, entity flow diagram, queue/server network,
and function block diagram. According to another embodi-
ment, the first element includes at least one port, and wherein
the mode switching event is in response to a change in
attribute of a received signal associated with the at least one
port.

According to one embodiment, the graphical model
includes at least one of a time-based block diagram, activity
diagram, or a dataflow diagram. According to another
embodiment, the computer-readable medium further com-
prises instructions for indicating that the at least one element
propagates the at least one attribute in response to the mode
switching event. According to another embodiment, the com-
puter-readable medium further comprises instructions for
receiving a flag, the flag indicating that the first element can
process the mode switching event. According to another
embodiment, the first element includes at least one input port
and at least one output port, and wherein the first attribute is
a dimension, and wherein the computer-readable medium
further comprises instructions for receiving a map defining at
least one constraint, the constraint identifying a dimension of
the at least one input port, the dimension used to determine a
dimension of the at least one output port, and instructions,
responsive to a selection of the at least one constraint, for
setting the dimension of the at least one output port based on
the selected at least one constraint.

According to one aspect of the present invention, a com-
puter-readable medium comprising computer-executable
instructions that when executed on a processor modify an
operating mode for a system, the computer-executable
instructions being generated from a graphical model repre-
senting the system, the graphical model having a fixed model
variable access structure is provided. The medium includes
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instructions for operating the system represented by the
graphical model in a first mode having a first behavior,
instructions for receiving a mode switching event, instruc-
tions for operating the system in a second mode having a
second behavior based on the received mode switching event,
and instructions, responsive to receiving the mode switching
event, for executing the instructions for operating the system
in the second mode. According to one embodiment, the
graphical model comprises a first element having a first
attribute and a second element, and wherein the computer-
readable medium further holds instructions for associating
the mode switching event with a first element of the graphical
model, instructions for representing a first element having a
first attribute, instructions for representing a second element
having a second attribute, and instructions for associating a
mode switching event with the first element, instructions for
determining the second attribute to be consistent with the first
attribute, the instructions for determining being responsive to
the mode switching event.

According to another embodiment, the fixed model vari-
able access structure is a fixed read structure. According to
another embodiment, the fixed model variable access struc-
ture is a fixed write structure. According to another embodi-
ment, the fixed model variable access structure is a fixed read
and write structure. According to another embodiment, the
fixed model variable access structure is a fixed compile-time
structure.

According to one embodiment, the instructions for deter-
mining are adapted to propagate the first attribute to the
second attribute. According to another embodiment, the
instructions for determining further comprise instructions for
solving at least one constraint associated with the first and
second attributes. According to another embodiment, the first
element and the second element are not directly connected.

According to another embodiment, the second element
includes a nondirect feedthrough characteristic. According to
another embodiment, the first element and the second element
are connected via a nondirect feedthrough element. Accord-
ing to another embodiment, the nondirect feedthrough ele-
ment comprises an input and an output, and wherein the
nondirect feedthrough element does not have a direct rela-
tionship between the input and the output.

According to another embodiment, the nondirect
feedthrough element includes a delay block. According to
another embodiment, the nondirect feedthrough element
includes a memory block. According to another embodiment,
the instructions for determining the second attribute include
instructions that permit the user to define a process by which
the second attribute is determined. According to another
embodiment, the computer-readable medium further com-
prises instructions that, when executed, display to a user an
option to select a function that determines the second attribute
responsive to the mode switching event.

According to one embodiment, the first behavior is oper-
able to permit the system to process a first set of conditions by
the system, and wherein the second behavior is operable to
permit the system to process a second set of conditions by the
system. According to another embodiment, the instructions
responsive to receiving the mode switching event are
executed by the system at runtime. According to another
embodiment, the graphical model comprises a first element
including at least one input port and at least one output port,
and wherein the computer-readable medium further com-
prises instructions for receiving a map defining at least one
constraint, the constraint identifying a dimension of the at
least one input port, the dimension used to determine a dimen-
sion of the at least one output port, and instructions, respon-
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6

sive to a selection of the at least one constraint, for setting the
dimension of the at least one output port based on the selected
atleast one constraint. According to another embodiment, the
graphical model comprises a first element having a first
attribute, and wherein code associated with the first element is
responsive to the received mode switching event. According
to another embodiment, the code associated with the first
model is capable of propagating the first attribute in response
to the received mode switching event. According to another
embodiment, the code is adapted to propagate the first
attribute during execution of the code.

According to one aspect of the present invention, a system
comprises a memory configured to store information repre-
senting a graphical model representing a modeled system, the
graphical model having a fixed model variable access struc-
ture and including at least one element, the at least one ele-
ment having associated code that is configured to make at
least one attribute associated with a port of the element con-
sistent another attribute of the at least one element or another
element, and a processor configured to execute the code, and
responsive to a mode switching event, defining the at least one
attribute to be consistent with the another attribute. According
to one embodiment, the system operates in a first mode having
afirst behavior, and in response to receiving the mode switch-
ing event, the system operates in a second mode having a
second behavior. According to another embodiment, the
mode switching event is in response to a change in attribute of
a received signal associated with the port of the element.
According to another embodiment, the attribute is propagated
through the at least one element or to another element.
According to another embodiment, the fixed model variable
access structure is a fixed read structure. According to another
embodiment, the fixed model variable access structure is a
fixed write structure. According to another embodiment, the
fixed model variable access structure is a fixed read and write
structure. According to another embodiment, the fixed model
variable access structure is a fixed compile-time structure.

Further features and advantages as well as the structure and
operation of various embodiments are described in detail
below with reference to the accompanying drawings. In the
drawings, like reference numerals indicate like or function-
ally similar elements. Additionally, the left-most one or two
digits of a reference numeral identifies the drawing in which
the reference numeral first appears.

BRIEF SUMMARY OF THE DRAWINGS

The accompanying drawings are not intended to be drawn
to scale. In the drawings, each identical or nearly identical
component that is shown in various figures may be repre-
sented by a like numeral. For the purpose of clarity, not every
component may be labeled in every drawing. In the drawings:

FIG. 1 shows an example system that can be modeled using
modeling software;

FIG. 2 shows a conventional technique for varying signal
sizes that change in synchrony with a control signal;

FIG. 3 shows one application that may be modeled using an
exemplary embodiment;

FIG. 4 shows an example system that exhibits shortcom-
ings of conventional modeling systems;

FIG. 5A shows one example system in which various
aspects may be practiced;

FIG. 5B shows an example block diagram implementation
of'the system shown in FIG. 5A;

FIG. 6A shows an example block implementing various
aspects of propagating parameters in a modeled system;
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FIG. 6B shows an example subsystem implementing vari-
ous aspects of propagating parameters in a modeled system;

FIG. 7 shows an example subsystem that is responsive to
mode change events;

FIG. 8 shows an example state diagram that includes a state
model that changes modes in response to mode change
events;

FIG. 9 shows an example graphical programming environ-
ment in which various aspects may be practiced;

FIGS. 10A-10B show processes for performing a design
and execution of a graphically-modeled system according to
one embodiment; and

FIG. 11 shows a general-purpose computer system suitable
for practicing exemplary embodiments.

DETAILED DESCRIPTION

As discussed, graphical modeling languages (e.g., a
graphical programming language such as a block diagram
programming language) may be used to model a program.
Graphical modeling languages may benefit from elements
(e.g., block diagram elements) that can operate in different
modes. For instance, elements of the block diagram may
exhibit different behavior when functioning in different
modes. In some block diagrams, it may be beneficial to have
the ability to process different types of data, and it may be
beneficial to modify the execution behavior of one or more
elements of the diagram when the different types of data are
changed.

Conventional techniques of graphical programming have
elements that are limited in their function during execution
points where attributes such as dimension, initial conditions,
and complexity are changed. For instance, a sum block that
computes the sum of two inputs may be provided in a model
of'a system. When a dimension of one of the inputs of the sum
block does not match a dimension on one of the other input
because of a change in input signal dimensions, an error may
occur because of the difference in signal dimensions and the
inability of the element to resolve such a difference.

Further, it is appreciated that conventional techniques for
graphical programming are limited in that some types of
elements, such as elements not having a direct feedthrough,
are incapable of directly relating an input to an output, and
mode changes involving signal attributes are incapable of
traversing elements having nondirect feedthrough character-
istics. As defined herein, a direct feedthrough of an element
relates an input of the element to an output of the element. A
direct feedthrough need not relate all inputs to outputs, but
elements may have inputs that have direct feedthrough. In one
example, in a lazy (or delayed) evaluation scheme, the output
of a function may be computed without the need to have all
input values available.

The direct relation could be between one or more of the
element input values and one or more of the element output
values. In case of port based input and output, the direct
feedthrough could be differentiated between pairs of input
port and output port. If the ports have sizes or dimensions
larger than 1, the direct feedthrough could be differentiated
pairwise between respective elements or sets of elements of
the input and output ports. The relation between input and
output values could be an instantancous relation. For
instance, the instantaneous relation could be a functional
relation that relates an input value to an output value, such as
an algorithmic relation. Other functional relations could be
used, such as an equality (e.g., as represented by an algebraic
equation).
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Nondirect feedthrough between a pair of variable values of
an element indicates that there is no direct relation between
the pair of variable values. A nondirect feedthrough element
may have no direct feedthrough between any permutation of
input/output pairs. Examples of nondirect feedthrough ele-
ments includes delay blocks, shift blocks, memory blocks,
and other types of elements that do not relate input vales to
outputs. In another example, there exists an element (e.g., a
block) having a ‘pre’ operator that prepends a sequence of
values with an initial value. This ‘pre’ operator is also an
example of an entity that has nondirect feedthrough charater-
istics. Also, there may be elements that have nondirect
feedthrough characteristics for certain input/output pairs.
Because there is no direct relation between input values (or
other attributes) of some types of elements used in graphical
programming, there is difficulty using conventional program-
ming methods for modeling mode changes using such non-
direct feedthrough elements.

Many types of systems may include elements that can act
upon different types of signals having parameters that can
change dimension, data type, etc. An exemplary embodiment
can include a programming element having a fixed model
variable access structure that handles changes in attribute(s).
A model variable access structure includes the structure of
read and write access of variable of a model. Access function-
ality of a variable may include, for example, equations,
assignments, functions, procedures, and methods.

In one embodiment, the model may have a fixed write
structure, where the functionality that writes to a variable
does not change during execution. In another embodiment,
the model may include a fixed read structure, where the func-
tionality that reads a variable does not change during execu-
tion. Further, in another embodiment, the model includes a
fixed read/write structure, where the functionality that writes
a variable and the functionality that reads a variable does not
change during execution. A compile-time read and/or write
structure that is fixed means that the functionality that reads
and/or writes a variable during execution does not change
when the model is compiled. Thus, the fixed nature of the
read/write ensures computational causality. Computational
causality refers to an order of computations that can be deter-
mined So, a write may be determined to always or necessarily
occur before a read or vice versa. This implies a causal rela-
tion between the read and write in terms of their computation,
hence, computational causality. A block diagram may be
computationally causal and noncausal. In case of the latter,
the block diagram may be a graphical representation of a
system differential and algebraic equations.

According to one embodiment, the model can propagate
changed attributes to other elements as appropriate. Such a
propagation of attributes may ensure consistency among the
other elements that operate in different modes. In one
example system, an element (e.g., a block) having a fixed
read/write structure may be provided that is responsive to a
change in attributes, and modifies its execution behavior as a
result. For instance, one type of element that may be respon-
sive to mode changes includes a nondirect feedthrough ele-
ment.

In one example implementation, the amount of code nec-
essary to implement these elements in a block diagram pro-
gramming environment may be reduced because elements
used in exemplary embodiments can respond to changes in
attributes. For instance, by having elements that operate in
different modes, the complexity of a system design is
reduced, as alternative portions of a design that support
behavior in different modes are not necessary. Thus, system
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behavior may be represented (e.g., in a block diagram) in a
more general way, and using less elements (e.g., in a block
diagram).

Block diagram environments may include block diagrams
having blocks that support signals having a variety of func-
tional signal attributes. For example, a gain block may sup-
port n-dimensional signals with each dimension being of any
size, a range of data types, real, imaginary, and complex
signals, a variety of both continuous and discrete sample
times, etc. These functional attributes can modify the seman-
tics or functional behavior of a graphical model (e.g., a block
diagram, state diagram, data flow diagram, etc.). Further,
blocks may be arranged to represent and model systems or
portions of systems (e.g., subsystems). Also, systems may be
hierarchically arranged such that subsystems may contain
one or more blocks arranged in a block diagram.

In an exemplary embodiment, signal attributes for an
instance of a block may be finalized (or fixed) prior to execut-
ing a block diagram. For instance, an embodiment may com-
pile the diagram prior to executing the diagram. Compiling
the diagram may include propagating signal attributes to a
given block from all other blocks that are connected to this
block. The compiler may create instances of each block of the
block diagram, including the possible behavior that each
block may exhibit during runtime. In this way, blocks may be
defined that exhibit polymorphic behavior during runtime
(e.g., exhibit different context-dependent behavior during
runtime). Generally, polymorphism behavior is determined
during design time, as all possible behavior is determined
during compilation and incorporated in an element. This con-
cept is illustrated in FIG. 1.

FIG. 1 includes sum block 101, gain block 102, sine block
103, constant block 104 and sink 105. Sum block 101 can
include logic that adds two or more input signals together to
yield a summed output signal. Gain block 102 may include
logic that amplifies a received signal by a gain value to yield
an amplified output signal. Sine block 103 can include logic
that generates data values that can represent a waveform, such
as a sinusoidal waveform. Constant block 104 may include
logic that yields a value, such as a fixed value. Sink 105 may
include logic that receives one or more signals and stores the
signals to memory and/or makes the signals available to
another type of logic, such as another model, another device,
etc.

In the embodiment of FIG. 1, sum block 101, gain block
102, sine block 103, constant block 104 and output 105 may
operate on signals having one or more dimensions. For
example, sine block 103 may generate a signal represented by
a 3x3 matrix, as denoted by [3x3] at the output of sine block
103. In another embodiment, blocks may operate with vectors
having a dimension of 1xn. In the embodiment of FIG. 1,
blocks that are downstream in connectivity from another
block may inherit characteristics from the upstream block. It
should be appreciated that characteristics may be inherited in
any direction of connectivity—constraints may be defined for
one element, fed to other elements, and these constraints may
be solved for a designed system. According to one embodi-
ment, constraints may be determined for elements of a
designed system and solved based on the element connectiv-
ity within the designed system.

For example, sum block 101 may inherit characteristics,
such as a data size from sine wave block 103 and/or constant
block 104. By way of example, sum block 101 inherits its data
size ([3x3]) from sine wave block 103 and constant block
104, which both yield 3x3 outputs that are processed by sum
block 101. Further, sum block 101 yields an output (also with
a dimension of [3x3]) that is provided as an input to gain
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10
block 102. In this example, gain block 102 can inherit its data
size from sum block 101, which is upstream from gain block
102. In another embodiment, gain block 102 can inherit its
signal dimensions from other blocks in the model, such as
sine wave block 103, etc. Output 105 (Outl) may inherit its
size from gain block 102.

Conventional block diagram programming implementa-
tions may allow dimension attributes of a signal to vary at
run-time. For example, a dimension attribute may vary at
every time instant with the values of the signal. FIG. 2
includes one example system 200 showing an effect of vary-
ing signal sizes or “variable sizing” during runtime.

System 200 includes a switch control 201 block that
includes logic that switches an input signal to an output port
responsive to an input signal Inl 202. As shown in FIG. 2,
switch control 201 accepts input signals Constant 203 and
Constant2 204 and provides either signal as an input to gain
block 205 depending on the value of signal 202. Gain block
205 may include logic that amplifies a received signal by a
gain value to yield an amplified output signal similar to gain
block 102. Further, the output of gain block 205 is provided as
an output signal Outl 206.

Thus, system 200 yields an output signal dimension that is
dependent upon a control signal. In particular, output signal
dimension of switch control block 201 has a dimension of
either [10] or [2] based upon whether a control signal value
provided at input port In1 202 has a value of 0 or 1. In this
form of variable sizing, signal sizes vary in synchrony with
the values of'the signal. For example, in FIG. 2, the signal size
provided at the output of switch control 201 (either dimension
[2] or [10]) is modified synchronously with the value of the
control signal provided at input port In1 202.

FIG. 3 shows an illustrative example application in the
radar signal processing domain in which various aspects may
be implemented. In FIG. 3, attributes of signals, e.g., signal
dimensions, may need to be varied at run time at distinct
points in the execution of the block diagram. These signal
dimensions may be varied asynchronously with respect to
values of the signal. For example, one type of asynchronous
signal dimension variation may occur when signal dimen-
sions are varied at distinct mode-switching events.

FIG. 3 shows an image formation section 300 of a synthetic
aperture radar (SAR) system that is used to perform post-
processing of radar signals using Fourier transform tech-
niques. In one example, section 300 takes raw radar signal
data andyields image data. Section 300 may include a Fourier
Transform block 301 that includes logic that performs a Fast
Fourier Transform (FFT) of an input signal s(t,u). An output
of FFT block 301 is provided as an input to a matched filter
block 302 that includes filter logic that performs filtering of
the FFT output. The filtered output may be provided as an
input to an interpolation block 303, an output of which may be
provided to a block 304 that includes logic capable of per-
forming an inverse fast Fourier Transform (IFFT) on the input
signal.

According to one embodiment, input signal sizes in this
system s(t,u) may be varied in distinct steps (e.g., 128 time
points, 256 time points, etc.) to account for changes in radar
resolution. Such changes in resolution may happen upon
mode-switching events in the system. Changes in signal sizes
need to be propagated from the input to FFT 301, matched
filter block 302, interpolation block 303, and IFFT block 304.
In this example shown in FIG. 3, when the sizes of signals
change because of a mode switch, all states in the subsystem
may be reinitialized. Although the functions shown in FIG. 3
are provided by way of example, such functions may be any
type of function having any degree of complexity.
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In one embodiment, varying dimensions in synchrony with
values of signals may be insufficient to solve certain prob-
lems, such as problems involving changes to attributes such
as dimensions at distinct mode-switching events. This prob-
lem is illustrated in more detail in the example shown in FIG.
4. An example system 400 includes an input u (403), a delay
block 401, a sum block 402, gain block 404, and output y
(405). Unit delay block 401 may include logic that yields a
one-step delay from input to output. Unit delay block 401
may be configured in a feedback path and provide an input to
sum block 402. Gain block 404 may take an output signal of
sum block 402 and may amplify the output signal by a gain
value to yield an amplified output signal. This amplified out-
put signal may be provided as an output y (405), and also may
be provided as an input to unit delay block 401 in the feedback
path.

System 400 may be executed in graphical programming
environments by determining that, for example, delay block
401 can yield output values at any given time independent of
an input. Therefore, the output of delay block 401 can be
computed first, followed by the output of sum block 402.

Now consider the case where input signal u (item 403) of
system 400 changes its dimensions to a new value. If signal
dimensions are allowed to change only synchronously with
the signal values, the output of delay block 401 may need to
be computed at a time when its input dimensions (which are
the same as the output dimensions of sum block 402) have not
yet been set to the new value. This is problematic, as an error
may occur if the dimensions of the inputs of sum block 402 do
not match, and block 402 does not have the capability of
processing the mismatched inputs. This same problem
extends to many different block types. For example, this
problem applies to block types having states stored inside of
them (e.g., filter blocks).

In some applications, it may be desirable to use signals
whose sizes synchronously change with their values along
with signals whose sizes change on distinct mode-switching
events. FIGS. 5A-5B show an example application that dem-
onstrates a modeling problem that can arise in the wireless
communications area. In particular, FIG. 5A shows a com-
munication system having a base station 501 that communi-
cates with one or more transmitters/receivers S02A-502C.
Wireless communication systems such as cellular telephone
systems may have such a communication system configura-
tion. In the example shown, such a system may include a cell
tower that communicates with one or more cellular phones
that transmit and receive information to/from the cell tower.

In such communication system types, transmitters/receiv-
ers are added and subtracted from the system as these trans-
mitters/receivers are turned on/off, enter/leave from the trans-
mission area, or travel to various locations within the
transmission area. One problem with maintaining communi-
cation in such a communication system includes determining
a communication solution that ensures diversity among the
transmitters/receivers such that as transmitters/receivers are
added, communication parameters are adjusted to minimize
interference between the transmitters/receivers. To solve this
problem, transmitter power control algorithms may be pro-
vided to allow transmitters/receivers to dynamically share
bandwidth of a wireless channel, optimizing the channel
throughput.

FIG. 5B shows a block diagram of a system 500 that com-
putes the power control strategy for a communication system
such as that shown in FIG. 5A. Similar to other block diagram
models, system 500 may include blocks having logic that
perform various functions. System 500 includes a block 505
that represents one or more mobile stations that yield trans-
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mission signals [NxM]. Such signals are added via a summa-
tion block 506, and are added to an additive white Gaussian
noise channel model block 507 output via a sum block 508.
An output of sum block 508 is provided to receivers block 509
of'a base station 510 (e.g., of base station 501) to receive and
process the received signal. Also, such a received signal is
provided to a power control block 504 that determines a
power control strategy based on the received signal.

As shown in FIG. 5B, a closed-loop power-control strategy
implemented in the communications base-station 501 is var-
ied at distinct points in time rather than at all times. In par-
ticular, base-station 501 feeds back information to the trans-
mitters/receivers (e.g., transmitters/receivers 502A-502C of
FIG. 5A), to permit the transmitters/receivers to transmit at
the proper frequencies/power scenarios to ensure signal
diversity. System 500 may also include a bit error rate calcu-
lator 511 that determines error rates within the received sig-
nal.

Although the transmission solution is computed at distinct
points, the number of wireless transmitters/receivers (e.g.,
transmitters/receivers 502A-502C) may change periodically
over time. Mode1 500 includes signals representing transmit-
ters/receivers (e.g., transmitters/receivers 502A-502C)
whose sizes change constantly in synchrony with the signal
values. Such signal values, may be, for example, signals
transmitted by transmitters/receivers 502A-502C of FIG. 5A.
In contrast, power-control subsystem 504 in base station 501
may use signals whose sizes change at distinct points in time
where the number of current transmitters is sampled and held
for the duration of time over which that power-control strat-
egy is in effect. That is, for a particular time interval, the
power control strategy is maintained, although transmitters/
receivers may appear or disappear over time during any
period the power control strategy is operating.

In the example of FIGS. 5A and 5B other signal attributes
such as data types may also need to be varied at mode switch-
ing events. For instance, in the communication example
above, different communication protocols may be associated
with different modes, and various receivers may use different
protocols depending on their mode. Other system examples
may be used wherein other attributes may be varied respon-
sive to mode switching event. In another example using a
control system involving one or more sensor inputs, the same
control strategy may need to be exercised with different data
types at run-time based on switching to different precisions of
sensor inputs.

EXAMPLE IMPLEMENTATION

In one example implementation a mode-switched variable
signal sizing block diagram environment may be imple-
mented using the Simulink® software product provided by
The MathWorks Inc. of Natick, Mass. According to one
embodiment, a block may be provided that is designed to
support mode-switched variable size computation.

FIG. 6A shows one example block that is capable of per-
forming mode-switched computation according to one
embodiment. In particular, FIG. 6A shows a block 601 that
includes code that is responsive to a mode switching event.
According to one embodiment, the block (or other type of
graphical modeling construct) includes code that is capable of
being executed by a system, permitting that system to be
responsive to a mode switching event. Such code may be
simulated or otherwise executed (e.g., by a simulation engine,
device, etc.), to respond to the mode switching event and
modify the execution behavior of one or more blocks.
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Block 601 may include one or more inputs (e.g., inputs
602, 603) and may include one or more outputs (e.g., output
604). In one exemplary embodiment, block 601 may compute
asum of signal inputs 602 and 603, and yield a corresponding
output 604 that represents the sum of the signal inputs 602 and
603. In another embodiment, block 601 may implement other
types of functions. For instance, block 601 may implement a
concatenate function that concatenates multiple input vectors
into a single output vector. Also, blocks supporting mode-
switched functions may have more or fewer inputs and/or
outputs.

Block 601 may be configured to provide several types of
information to the block-diagram modeling environment. For
instance, block 601 may provide:

(1) A flag indicating a readiness of block 601 to support
mode-switched variable size signals Such a flag may be made
available to another block, device, simulation engine, or sub-
system to determine whether block 601 supports mode-
switched variable size signals.

(2) A map that defines a set of dependency constraints on
which input port dimensions are needed for setting respective
ones of'its output port dimensions. In another embodiment, an
output port dimension can be used to set an input port dimen-
sion. According to one embodiment, more than one constraint
set may be specified for one output port of a block. Such a map
may reside in the block (e.g., block 601) or may be defined
elsewhere, such as in an external block or subsystem, in a map
associated with a block diagram, or in any other location.

(3) A new method defined for a block, called during runt-
ime, that sets the sizes of each of the block’s output ports
based on one of the dependency constraints chosen by the
simulation engine from among the constraints provided by
the block in (2).

Two code examples below demonstrate how a block (e.g.,
block 601) can specify its mode-switched variable size
behavior. The first example involves a 2-input sum block
(e.g., block 601) that may be used in a graphical programming
environment (e.g., within an environment provided by the
Simulink® software product). In one embodiment, the block
may use a technique to indicate its readiness to handle mode-
switched variable-size signals. For example, in one embodi-
ment, the block may set a flag to indicate its readiness to
handle mode-switched variable-size signals. This flag may
also be used to identify whether the block is capable of han-
dling mode-switched operation.

According to one embodiment, the block may also provide
the following map in a suitable data-structure (e.g., a data
structure internal to the block or external to the block):

Constraintl: Sizes of Outputl of sum can be computed
using sizes from input 1

Constraint2: Sizes of Outputl of sum can be computed
using sizes from input 2 The block may have any number of
constraints that define what relationship(s) need to be satis-
fied.

Further, according to one embodiment, the block may have
associated with it code that implements a behavior resulting
from a mode-switching event. For example, the code, when
executed, may perform an attribute setting function based on
a mode-switching event. In one example, the sum block may
register a function with a simulation engine (e.g., a simulation
engine of the Simulink® software product) of the form:
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void SumSetOutputSizes(BlockHandle bh, int constraintIdx)

if (constraintldx == 1) {
bh->setOutputSizes(1, bh->inputSizes(1));// Copy sizes from
// inp 1 to output 1
}else {

Assert(constraintldx == 2);
bh->setOutputSizes(1, bh->inputSizes(2));// Copy sizes from
// inp 2 to output 1

In the example code above, the output port size dimension
(e.g., of output port 604) is changed to the dimension of either
of'the input ports (e.g., input ports 602, 603) of the sum block.
The simulation engine may call the above method with either
constraint index based upon a propagation sequence.

As discussed, although such mode switching may be per-
formed with a sum block, other functions may be performed
by block 601 that are responsive to mode-switching events.
The second example illustrates block 601 performing a dif-
ferent function, namely a 2-input vector concatenation. In one
embodiment, the block concatenates two input vectors into a
single output vector. As discussed above with respect to the
2-port sum block example, the 2-input vector concatenate
block may be programmed to set a flag indicating its readiness
to handle mode-switched variable-size signals. According to
one embodiment, the 2-input concatenate block may then
provide the following map in a suitable data-structure:

Constraintl: Sizes of Outputl of Concatenate can be com-
puted using sizes from inputs 1 and 2

Thatis, the constraint indicates that the size dimension may
be determined based on both of the available inputs to the
concatenate block.

Finally, the concatenate block may register a function with
the simulation engine of the form:

void ConcatSetOutputSizes(BlockHandle bh, int constraintIdx)

assert(constraintldx == 1);
// Set output size to be sum of input sizes
bh->setOutputSizes(1, bh->inputSizes(1) + bh->inputSizes(2));
// *+” operator
// overloaded to add
/I sizes of all
dimensions

As discussed above, graphical models (e.g., a block dia-
gram model) may include a number of blocks that operate in
different ways. In some embodiments, it may be desirable to
arrange the blocks based on functionality or other character-
istics. One way to arrange the blocks based on functionality or
characteristics is via subsystems. In another embodiment,
subsystems (or portions thereof) may also be adapted to sup-
port mode-switched processing. FIG. 6B shows an example
subsystem 610 that may be used to practice various embodi-
ments.

According to one embodiment, it may be useful to identify
subsystems that are capable of supporting mode-switched
variable signal sizes. Indicators may be used to demarcate
regions of the block-diagram (e.g., a subsystem) where mode-
switched variable size signals are supported. Regions may be
demarcated, for example, using graphical indications, colors,
or other indicator types.

A subsystem 610 that supports mode-switched processing
may include one or more blocks, each having one or more
inputs and outputs. Subsystem 610 may include, for example,
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asumblock 611, gain block 613, delay block 612, gain blocks
614, 615 and a vector concatenate block 616. Sum block 611
is a three-port sum block that includes logic that yields an
output sum of the three input signals. A vector concatenate
block includes logic that concatenates signals provided at its
inputs to create a contiguous output signal.

Further, subsystem 610 may include one or more inputs
such as inputs Inl-In4 (elements 617-620). Subsystem 610
may also include one or more outputs such as, for example,
Outl-Out2 (elements 621-622). These blocks, inputs and out-
puts may be connected in various ways via interconnecting
signal lines, including the example arrangement shown in
FIG. 6B. According to one embodiment, one or more blocks
in FIG. 6B may be adapted to perform mode-switched pro-
cessing. For instance, sum block 611 could be adapted to
support mode-switched processing as discussed above with
respect to the example code.

According to one embodiment, subsystem 610 may be
configured to process variable size signals and to respond to
one or more mode switching events. For instance, an event
may be triggered that causes a mode switch to be performed
during processing of subsystem 610, after which attributes
are propagated among elements of subsystem 610.

In one example implementation, subsystems represented
by blocks may include a flag that indicates that blocks in the
subsystem are expected to support mode-switched variable
size signals. In an embodiment, this flag can be provided as a
widget on the block parameters dialog for the subsystem. In
another example, the flag indicator may be implemented as
any control or setting associated with the block. In one
embodiment, setting a flag for the subsystem may identify
that all blocks within the subsystem are capable of supporting
mode-switched variable size signals. Such a flag may be used,
at initialization of the system, to define the behavior sup-
ported by the subsystem and its corresponding blocks.

For signal attributes such as dimensions, specialized
propagation code may be generated and provided with the
executable code that allows for a mode switch to be per-
formed. Thereafter, a corresponding attribute may be propa-
gated in the deployed application, when executed (e.g., by a
general-purpose computer system). In one example imple-
mentation, attributes can be determined before execution
based on possible mode change event that may occur during
execution. In such a case, executable code need not include
propagation functionality.

For an exemplary subsystem that has been setup to perform
processing of mode-switched variable size signals, the simu-
lation engine may be configured to perform three analysis
passes. The first analysis pass may use the constraint map
described above that is provided within each block to deter-
mine the constraint map for the subsystem as a whole. In an
embodiment, this process may be performed recursively
starting with hierarchically lowest subsystems (e.g., sub-
systems that do not themselves contain other subsystems)
first. This type of analysis pass is illustrated in the example of
FIG. 6B as discussed further below.

In the example of FIG. 6B, the constraint map for sub-
system 610 may be defined as:

Constraintl: Sizes of Outl of subsystem 610 can be com-
puted using sizes of In1 and In3

Constraint2: Sizes of Outl of subsystem 610 can be com-
puted using sizes of In2 and In3

Constraint3: Sizes of Out2 of subsystem 610 can be com-
puted using sizes of In4

This constraint map may be derived from the constraint
maps of blocks in the Subsystem 610 (e.g., blocks 611, 616,
etc.). Constraint maps can define conditions that determine
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output port dimensions for these blocks, and/or other
attributes that can change in response to a mode switching
event.

According to one embodiment, the second analysis pass
may define a SetOutputSizes function (as described for each
individual block above) for subsystem 610 as a whole. Given
one of the constraints from the constraint map for subsystem
610, this method may set the output port sizes of subsystem
610 given the input port sizes that are identified as available
by that constraint. This technique allows subsystem 610 to be
hierarchically subsumed by other subsystems, and therefore,
blocks responsive to mode events may be hierarchically
arranged and the resultant hierarchy may be responsive to
mode changes. For the example above, this method may be
defined as follows and may be embedded in generated code:

void SetOutputSizes(BlockHandle bh, int constraintIdx)

if (constraintldx == 1) {

bh->setOutputSizes(1, bh->getInputSizes(1) +
bh->getInputSizes(3));

} else if (constraintIdx == 2) {
bh->setOutputSizes(1, bh->getInputSizes(2) +
bh->getInputSizes(3));

}else {
assert(constraintldx == 3);
bh->setOutputSizes(2, bh->getInputSizes(4));

Thus, additional code may be provided with subsystem 610
to handle setting of output port sizes based on available input
parameters.

According to one embodiment, a third analysis pass may
determine one propagation sequence for sizes within a sub-
system marked as supporting variable size signals. For
example, this pass may involve a simple depth first traversal
of all blocks inside a given subsystem. In one embodiment,
the pass may traverse all blocks starting at the subsystem
inputs and using information about block connectivity (e.g.,
by following block connectivity from inputs to outputs, or
other scheme). According to one aspect, it is appreciated that
this sequence may be used both in simulation and in the
generated code to propagate all of the sizes within the sub-
system when input sizes change in response to a mode switch
event. For the example above with respect to FIG. 6B, one
potential sequence for propagating sizes given new input
sizes may include the following sequences:

sum block 611

gain block 613

delay block 612

gain block 614

vector concatenate block 616

gain block 615

A further refinement to the above procedure may involve
using the results of the propagation pass in the third analysis
phase above to perform optimizations on the SetOutputSizes
function derived in the second analysis pass. For instance, if
only a subset of constraints in the constraint map of a sub-
system are exercised in a given model, then the unused con-
straints for that subsystem can be optimized away leading to
a simpler SetOutputSizes function for subsystem 610.

During simulation or otherwise during any other execution
of generated code, an event may be triggered that causes the
sizes at the input of the subsystem (e.g., subsystem 610) to
change. At this point, the sizes may be repropagated through
the subsystem using the propagation sequence obtained in the
third analysis pass described above. During the propagation,
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a block’s SetOutputSizes function (the third piece of infor-
mation specified by each block as described above) may be
called to help propagate its sizes from its input to output or
alternatively from its output to its input.

Similarly, when code is generated for a subsystem, meth-
ods such as the SetOutputSizes functions as discussed above
may be embedded into the generated code in accordance with
the sequence defined by the third analysis pass. This code may
be invoked when the subsystem’s sizes are changed in
response to an event.

Events that cause propagation of attributes may include
explicit signaling events such as those involving conditional
subsystems. For instance, a subsystem that evaluates a con-
dition and performs a function as a result may be used to
signal a mode change event. For instance, a subsystem having
logic that implements a case switch function, do while loop
function, if else function or any other function whose execu-
tion depends upon one or more parameters (e.g., an input
signal). In another example, an event could be generated from
ablock in a block diagram where the block behavior is speci-
fied or implemented in a textual language, such as, for
example, MATLAB or embedded MATT.AB, a mathematical
script, etc. In another implementation, a mode switching
event can include the occurrence of an exceptional or error
condition, and attributes may be determined based on the
occurrence of a particular exceptional or error condition.

According to one embodiment, a mode switching event can
be generated by a number of different entities, including, but
not limited to a user, an operating system, an entity external to
the system (e.g., a data acquisition system, hardware, soft-
ware, or combination thereof), or other entity. Further, amode
switching event may be generated in a concurrent execution,
for example, in a different task, process, or thread. Also, a
mode switching event can be generated, for example, in a
different simulation loop, by the operating system (for
example, as part of an interrupt service routine), or can be
based on user input.

Further, events may be non-hierarchical (e.g., not gener-
ated by a block in the hierarchy) such as a broadcast event
received from a modeling environment such as one generated
by other programming environments (e.g., SimEvents® or
Stateflow® environments of the Simulink® software prod-
uct). Events may also be implicitly generated by changes in
signal attributes to demarcated regions indicated as one that
propagates attributes. For instance, an implicit change in
input signal parameters (e.g., size of the input parameter) may
trigger a mode change event that can be propagated to other
elements, blocks, subsystems, etc.

Mode change events that trigger a repropagation of signal
sizes in a software package (e.g., the Simulink® software
product) could be explicit or implicit mode change events.
Explicit events may include those modeled by the user using
conditional subsystems (e.g., as defined in the Simulink®
software product) or through the use of state-transition dia-
grams (e.g., in the Stateflow® software product). For
instance, a size repropagation can be triggered when a con-
ditional subsystem such as an enabled subsystem or function-
call subsystem becomes re-enabled.

One way to manage a mode change event in a graphical
form may include using a state chart (e.g., a Stateflow® chart
as provided in the Stateflow® software product). Consider the
system shown in FIG. 7, and its corresponding state chart
shown in FIG. 8. In the example shown in FIG. 7, chart 701
may send a mode change event to subsystem 702. In particu-
lar, FIG. 7 shows a display of a chart 701 that provides mode
change control input 703 to a subsystem 702 which can pass
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a value of a to MODE_CHANGE_EVENT signal 704. Sub-
system 702 may be, for example, similar to the subsystem 610
as shown in FIG. 6B.

In addition to control input 703, chart 701 may provide a
number of outputs (y1, y2, y3, y4) to subsystem 702 as inputs
(In1, In2, In3, Ind4). For instance, inputs In1, In2, In3, and In4
may correspond to inputs 617-620 of subsystem 601. Further,
subsystem 702 may include one or more outputs (e.g., Outl
705, Out2 706) that provide one or more output signals,
respectively. These may correspond to the outputs 621, 622 of
subsystem 601.

As shown in FIG. 8, a state chart 801 may be provided that
indicates that a subsystem (e.g., subsystem 702) operates in
one of two modes. In the example shown, these modes are
referred to as Model and Mode2. Chart 701 sends a “mode
change event” to subsystem 702 to initiate a transition from
Model to Mode2. According to one embodiment, the Model
and Mode2 modes may use functional-form operators to set
the sizes ofthe output data of the chart which are connected to
subsystem 702. Thus, the sizes of the output data may depend
on the mode change triggered by a chart (e.g., chart 801).
More particularly, when the state transition takes place from
Model to Mode2 or vice versa, chart 801 may be responsible
for triggering a mode change event to a subsystem (e.g.,
subsystem 702) which re-propagates the data sizes, sample
times etc. or other attributes at the time of the event occur-
rence.

While this example shows chart 701 setting sizes of outputs
to constant values, it is possible for the functional form opera-
tors (e.g., operator setSize( ) as shown in FIG. 8) to accept
expressions evaluated at runtime or before runtime with
results stored to be used during runtime for setting the sizes.
In addition, chart 701 can also set the types and sample times
of'the outputs via one or more functional form operators (e.g.,
operators such as setSampleTime( ) and setType( ). Thus, a
capability may be provided to permit users to “explicitly”
trigger the mode changing based on runtime protocols using
state diagrams in conjunction with a graphical programming
environment.

Implicit mode change events may be triggered, for
example, when sizes of signals feeding a mode-switched
variable sizing subsystem may be exchanged at run-time.
Such a size change may be automatically detected by the
subsystem which in turn may initiate a size repropagation and
a state reset. This implicit detection of mode change could be
added, for instance, to any class of subsystems in the Sim-
ulink® software product or any other programming environ-
ment.

Although various embodiments may relate to propagating
signal dimensions, it should be appreciated that other
attributes may be propagated to other elements in response to
an event. For instance, any signal attribute may be propa-
gated, such as a data type of the signal being processed, a
change in signal complexity, and sampling times used for
processing a signal, among other attributes.

Further, although many of the examples described above
may relate to the Simulink® software product, it should be
appreciated that aspects may be applied to other block-dia-
gram modeling paradigms such as state transition diagrams,
discrete event modeling, and dataflow modeling. This is
because the notion of attribute propagation in response to a
mode-switching events remains unchanged by the specific
execution semantics of a specific block-diagram modeling
paradigm.

However, according to one embodiment, various aspects
may be implemented in a graphical programming environ-
ment that uses blocks to represent models. FIG. 9 shows an
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exemplary graphical programming environment in which
blocks may be utilized to represent models according to one
embodiment. Environment 900 includes a block library block
910, an editor 920, a simulator 930 and a code generator 940.
Editor 920 and simulator 930 may provide a graphical simu-
lation and prototyping environment for modeling, simulating,
and analyzing systems. Editor 920 may incorporate blocks
provided from block library 910 into systems to be designed
by users. Systems designed in editor 920 may be simulated by
simulator 930 to analyze the behavior of the designed sys-
tems. Exemplary editor 920 and simulator 930 may be found,
for example, in the Simulink® software product.

As discussed, the block diagram programming environ-
ment enables one or more users to design a block diagram
corresponding to a modeled system, simulate the system’s
behavior, analyze the performance of the system, and refine
the design of the system. The environment may also allow
users to design systems through a user-interface that allows
drafting of block diagram models of the systems. Predefined
blocks in block library 910 may be made available to users
when the users are building the block diagram of the systems
to allow such users to more easily design systems.

According to one embodiment, one or more block types in
block library 910 may be responsive to mode change events.
Also, users may be provided tools to modify behavior of
custom block types the users have created so that such custom
blocks are responsive to mode change events. In one imple-
mentation, a block may include logic that exhibits a change in
execution behavior in response to a mode change event.

In one embodiment, the user may be provided an interface
that selectively allows the user to define one or more functions
or instructions that can be performed responsive to a mode
change event. For instance, a user dialog may be provided that
permits the user to select one or more predetermined func-
tions that can be executed responsive to the mode change
event. For example, the user dialog may permit a userto select
an interpolation function, extrapolation function, first order
hold function, zero padding function, reset values, or other
function. In another embodiment, the user may be permitted
to define their own function that can be used, for example, to
compute output values and/or other attributes for a block
responsive to the mode change event. This may be accom-
plished, for example, by permitting a user to define their own
function, script, or procedure that could be executed.

Individual users may be able to customize model blocks to:
(a) reorganize blocks in some custom format, (b) delete
blocks they do not use, and (¢) add custom blocks they have
designed. The blocks may be dragged through some human-
machine interface (such as a mouse or keyboard) from block
library 910 on to a window (e.g., a model canvas). The block
diagram programming environment may include a block dia-
gram editor that allows users to perform such actions as draw,
edit, annotate, save, and print out block diagram representa-
tions of systems.

The block diagram editor may be a graphical user interface
(GUI) component that allows drafting of block diagram mod-
els by users. The block diagram programming environment
may also provide a textual interface with a set of commands
that allow interaction with the graphical editor. Using this
textual interface, users may write special scripts that perform
automatic editing operations on the block diagram. The envi-
ronment may also allow users an ability to simulate the
designed systems to determine the behavior of the systems.
Further, the environment may include a block diagram execu-
tion engine that carries out the task of compiling and linking
the block diagram to produce an “in-memory executable”
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version of the model that may be used for generating code
and/or simulating a block diagram model.

A block diagram generally includes a class of modeling
formalisms that connect entities by relations. Semantics of a
block diagram syntax can be implemented to capture formal-
isms such as state transition diagrams, Petri nets, Kahn pro-
cess networks, datatlow diagrams, sequence diagrams, Com-
municating Sequential Processes, and other syntactic and
semantic models. The syntax of a block diagram may include
any syntax type including, but not limited to, squares, rect-
angles, circles, ovals, icons, and user defined syntax. Further,
a graphical model such as a block diagram may contain ele-
ments the behavior of which is completely or partially deter-
mined by a textual language. This language may be dynami-
cally typed and it may be array based. Also, the blocks may be
software components, objects in a service oriented architec-
ture, hardware intellectual property (IP) blocks, etc.

Block library 910 contains blocks of application specific
models that may support the modeling and simulation of
systems. Blocks in the block library 910 may be incorporated
into models of the systems designed using modeling and
simulator 930. The blocks provided from the block library
910 may be represented generally by rectangular blocks
according to one embodiment. However, other embodiments
may represent elements within models using other tech-
niques, such as graphical symbols and/or textual symbols.

The model blocks provided by the block library 910 may
include a block processing block for selectively processing
input data. According to one embodiment, block library 910
may include Simulink® software product Blocksets, such as
DSP blockset, Fixed-point Blockset and Communications
Blockset, commercially available from The MathWorks, Inc.,
Natick, Mass. The Simulink® software product Blocksets
provide models and utilities for the development and integra-
tion of models for target systems and sub-systems of the
target systems.

According to one embodiment, code generator 940 may be
capable of generating source code for models that are respon-
sive to mode change events. In one embodiment, code gen-
erator 940 generates customizable C-code directly from
block diagrams of the models designed using editor 920.
Although it should be appreciated that C-language code may
be generated, it should be appreciated that any other type of
code may be generated. For example, Hardware Descriptive
Language (HDL), ADA, Java, JavaScript, Python, Erlang, or
other code types may be generated that may be graphical
(e.g., UML diagrams). Alternatively and in addition, library
or object code could be directly generated or referenced. By
automatically generating source code, code generator 940
may enable rapid prototyping, hardware-in-the loop simula-
tions, and desktop rapid simulation on the models designed in
the editor 920. Code generator 940 may generate efficient
source code for embedded systems applications. It should be
noted that source code in FIG. 9 is an illustrative code that
may be generated in the code generator 940, and that the code
generator 940 may generate different code for the models,
such as Ada. Real-Time Workshop available commercially
from The MathWorks, Inc., Natick, Mass., is one example
code generation tool that may be used as code generator 940.

According to one embodiment, code generator 940 may be
adapted to generate a minimized source code responsive to
mode change events. In one embodiment, because additional
code is provided that defines constraints that reconcile how
attributes are changed during runtime, the code that models a
system can be created more efficiently, as the code need not
handle all conditions some of which may not necessarily
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occur. The smallest dimension of code may be determined,
for example, through static or dynamic analysis (e.g., by
executing a test suite).

One of skill in the art will appreciate that the graphical
programming environment 900 is not limited to block dia-
gram programming environments, but rather includes any
other graphical programming environments, such as state
flowchart graphical programming environments. For
instance, the Stateflow® product, may provide a graphical
environment for modeling and designing event-driven mod-
els. The Stateflow® product may enable users to generate
state flowcharts that graphically represent hierarchical and
parallel states and the event-driven transitions between the
states of the models. The Simulink® software product, which
may be interfaced with the Stateflow® product, may be used
to execute the models and analyze the behavior of the models
based on, for example, state flowcharts created by the State-
flow® product.

Environment 900 may perform one or more processes with
blocks that permit such blocks to exhibit behavior responsive
to mode changes. For instance, FIG. 10A shows a process
1000 that may be implemented by an environment (e.g., envi-
ronment 900) to graphically model, simulate and execute
code produced in accordance with various embodiments. At
block 1001, process 1000 begins. At block 1002, a graphical
programming environment (e.g., environment 900) may be
presented to a user. As discussed above, a graphical program-
ming environment (e.g., a block diagram to programming
environment) may permit one or more users to design a
graphical model corresponding to a modeled system, simu-
late the system’s behavior, analyze the performance of the
system, and refine the design of the system.

The environment may also allow users to design systems
(e.g., at block 1003) through a user interface that allows
drafting of block diagram models of the systems. According
to one embodiment, one or more blocks may be provided that
have the capability of propagating attributed in response to
mode change events. Such blocks may be used to model a
system, that, when executed, exhibits different execution
behavior in response to such mode change events.

Users may perform a number of different functions within
the programming environment on a modeled system. For
instance, the user may simulate the modeled system (e.g., at
block 1004) using, for instance, simulator 930. Such a simu-
lation may include a graphical indication of mode change
events in a display of a computer system. Further, a user may
test code associated with the modeled system (e.g., at block
1006). Also, the user may be capable of generating code (e.g.,
at block 1005) using the graphical programming environ-
ment. As discussed above, a graphical programming environ-
ment may provide a code generator (e.g., code generator 940)
that is capable of generating executable code. Such generated
code may include one or more code elements responsive to
mode change events as discussed above. The generated code
may be executed by one or more systems at block 1007. As
discussed above, such code may be executed by computer
systems, devices, or any other system capable of executing
code. For example, a device capable of executing a model is
discussed below with respect to FIG. 11.

FIG. 10B shows an example operation of a system capable
of'executing a graphical model. At block 1011, process 1010
begins. At block 1012, a system, device or other entity
capable of executing a model executes code associated with
such a model at block 1012. The device may be, for example,
an embedded system that executes code produced, for
example, by code generator 940. At block 1013, it is deter-
mined whether a mode switching event is received. As dis-
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cussed above, the mode switching event may be generated,
for instance, by a block in a model, or by any other entity
capable of generating an event. If a mode switching event is
received, the executed code may propagate one or more
attributes at block 1014. As discussed above, such attributes
may be propagated to other blocks, subsystems, etc. of a
modeled system. At block 1015, the model is executed using
the propagated attribute(s).

The system may receive further mode switching events that
may cause the system, device or other entity to operate in one
ormore modes. For instance, the system may receive a further
mode switching event that causes the system to return to a
previous mode or to transition to one of any number of addi-
tional modes. In such a case where a further mode switching
event is received (e.g., as determined at block 1016), the
system may propagate one or more attributes associated with
the event.

FIG. 11 is an exemplary electronic device 1100 that may be
used for practicing various aspects, Device 1100 may include
a device that executes instructions to perform one or more
operations, such as executing a model, generating code, or
executing code as discussed above with reference to FIGS.
10A-10B. Device 1100 may be, for example, a general pur-
pose computing device such as a desktop computer, a laptop
computer, a client, a server, a mainframe, a personal digital
assistant (PDA), a web-enabled cellular telephone, a smart
phone, smart sensor/actuator, or another type of device that
executes instructions (e.g., an application specific appliance).

Electronic device 1100 includes a network interface 1130,
a MODEM 1140, a secondary memory 1150, a primary
memory 1160, a microprocessor 1170, a monitor 1180 and
interface 1190. For example, interface 1190 may include any
type of single or multi-point computer interface such as, for
example, a keyboard, mouse, microphone, camera, touch
screen, accelerometer, biometric or neural input, or any other
type of interface. Microprocessor 1170 may control each
component of the electronic device 1100 to run code, such as
software tools provided in the graphical programming envi-
ronment 900. Electronic device 1100 may receive data nec-
essary for controlling the design and simulation of a target
system through, for example, the interface 1190. Received
data may include control data that may be used to set up
operation modes of a block processing block.

Monitor 1180 may display a result generated in the graphi-
cal programming environment 1100. For example, monitor
1180 may display modeling results to one or more users.
Primary memory 1160 may fetch codes from secondary
memory 1150 and provide the codes to the microprocessor
1170 codes. The codes may be executed by the microproces-
sor 1170 to operate the electronic device 1100 and to run the
graphical programming environment 900. Secondary
memory 1150 may contain software tools for applications.
Secondary memory 1150 may include, in particular, code
1151 for the block library 910, code 1152 for editor 920, and
code 1153 for simulator 930. Network interface 1130 and/or
MODEM 1140 enable the electronic device 1100 to commu-
nicate with other electronic devices through communication
networks, such as Internet, intranet, LAN (Local Area Net-
work), WAN (Wide Area Network) or any other type of com-
munication network. Further, communication facilities may
support distributed implementations of exemplary embodi-
ments. In addition, code may represent, for example, remote
procedure calls and remote method invocations and the code
may be based on service oriented architectures.

Although the examples above have been described relative
to a Simulink® software Product® block diagram model, it
should be appreciated that aspects may be practiced relative



US 9,063,741 B2

23

to models implemented in other graphical modeling environ-
ments including UML modeling environments such as the
Rational Rose modeling environment available from Interna-
tional Business Machines, Inc. of White Plains, N.Y. For
instance, in UML, elements used in component diagrams,
activity diagrams, and other diagram types may be capable of
responding to mode switching events. Other graphical mod-
eling environments may implement various aspects, includ-
ing but not limited to, SimMechanics and SimFlectronics
environments available from The MathWorks, the LabVIEW
environment available from National Instruments Corpora-
tion of Austin, Tex., SysML available from SysML. Partners at
http://www.sysml.org, MaRTE OS available from the Uni-
versidad de Catabria, Spain, SCADE available from Esterel
Technologies, Mountain View, Calif., Modelica available
from the Modelica Association at http://www.modelica.org,
Dymola available from Dynasim AB at http://www.Dy-
nasim.se, AUTOSAR available from the AUTOSAR devel-
opment partnership at http://www.autosar.org, SystemC
available from the Open SystemC Initiative at http://www-
systemc.org, CORBA available from the Object Manage-
ment Group Inc. at http://www.corba.org, C++ available from
a variety of vendors, among others.

CONCLUSION

Implementations may provide devices and techniques that
propagate attributes in models. The foregoing description of
exemplary embodiments provides illustration and descrip-
tion, but is not intended to be exhaustive or to limit the
invention to the precise form disclosed. Modifications and
variations are possible in light of the above teachings or may
be acquired from practice of the invention. For example,
while a series of acts has been described with regard to FIGS.
10A-10B, the order of the acts may be modified in other
implementations consistent with the principles of the inven-
tion. Further, non-dependent acts may be performed in par-
allel.

In addition, implementations consistent with principles of
the invention can be implemented using devices and configu-
rations other than those illustrated in the figures and described
in the specification without departing from the spirit of the
invention. Devices and/or components may be added and/or
removed from the implementations of FIGS. 5A-9 and 11
depending on specific deployments and/or applications. Fur-
ther, disclosed implementations may not be limited to any
specific combination of hardware.

Further, certain portions of the invention may be imple-
mented as “logic” that performs one or more functions. This
logic may include hardware, such as hardwired logic, an
application-specific integrated circuit, a field programmable
gate array, a microprocessor, software, wetware, or a combi-
nation of hardware and software.

No element, act, or instruction used in the description of the
invention should be construed as critical or essential to the
invention unless explicitly described as such. Also, as used
herein, the article “a” is intended to include one or more
items. Where only one item is intended, the term “one” or
similar language is used. Further, the phrase “based on,” as
used herein is intended to mean “based, at least in part, on”
unless explicitly stated otherwise. The scope of the invention
is defined by the claims and their equivalents.

What is claimed is:

1. A non-transitory computer-readable medium storing
computer-executable instructions, the computer-executable
instructions comprising:
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one or more instructions that when executed on a processor

cause the processor to:

operate a system in a first mode having a first set of behav-

iors, the system being represented by a graphical model
comprising a first element including at least one input
port and at least one output port;

receive a mode switching event;

operate the system in a second mode having a second set of

behaviors based on the received mode switching event;
and

the operating the system in the second mode comprising:

receiving a map identifying at least one constraint, the
constraint identifying a dimension of the at least one
input port, the dimension of the at least one input port
used to determine a dimension of the at least one
output port, and

setting, responsive to a selection of the at least one
constraint, the dimension of the at least one output
port, the setting based on the selected at least one
constraint.

2. The computer-readable medium for claim 1, wherein the
computer-executable instructions are generated from the
graphical model representing a modeled system.

3. The computer-readable medium of claim 2, wherein the
graphical model comprises a first element having a first
attribute and a second element, and wherein the computer-
readable medium further storing one or more instructions for:

associating the mode switching event with the first element

of the graphical model; and

propagating, based on the mode switching event:

the first attribute within the first element, or the first
attribute from the first element to the second element.

4. The computer-readable medium of claim 1, wherein the
first set of behaviors is operable to permit the system to
process a first set of conditions, and wherein the second set of
behavior is operable to permit the system to process a second
set of conditions.

5. The computer-readable medium of claim 1, wherein the
receiving the mode switching event occurs at runtime.

6. The computer-readable medium of claim 2, wherein the
graphical model comprises a first element having a first
attribute, and wherein code associated with the first element is
responsive to the received mode switching event.

7. The computer-readable medium of claim 6, wherein the
code associated with the first model is capable of propagating
the first attribute in response to the received mode switching
event.

8. The computer-readable medium of claim 7, wherein the
code is adapted to propagate the first attribute during execu-
tion of the code.

9. A non-transitory computer-readable medium storing
computer-executable instructions, the instructions compris-
ing:

one or more instructions that when executed on a processor

cause the processor to:

display a graphical model representing a system config-

ured to operate using a first behavior, the graphical
model having a fixed model variable access structure
and comprising:

a first element having a first attribute;

a second element having a second attribute;

associate a mode switching event with the first element;

determine the second attribute to be consistent with the first

attribute, the determining being responsive to the mode
switching event; and
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execute the graphical model using the determined second
attribute to produce an execution result that reflects a
second behavior according to the second attribute of the
graphical model.

10. The computer-readable medium of claim 9, wherein the
fixed model variable access structure is a fixed read structure.

11. The computer-readable medium of claim 9, wherein the
fixed model variable access structure is a fixed write structure.

12. The computer-readable medium of claim 9, wherein the
fixed model variable access structure is a fixed read and write
structure.

13. The computer-readable medium of claim 9, wherein the
fixed model variable access structure is a fixed compile-time
structure.

14. The computer-readable medium of claim 9, wherein the
instructions further comprise instructions that, when
executed on the processor, cause the processor to propagate
the first attribute to the second attribute.

15. The computer-readable medium of claim 9, wherein the
instructions further comprise instructions that, when
executed on the processor, cause the processor to solve at least
one constraint associated with the first attribute and at least
one constraint associated with the second attribute.

16. The computer-readable medium of claim 15, wherein
the at least one constraint associated with the first attribute
and the at least one constraint associated with the second
attribute are related.

17. The computer-readable medium of claim 15, wherein
the at least one constraint associated with the first attribute
and the at least one constraint associated with the second
attribute are a same constraint.

18. The computer-readable medium of claim 9, wherein the
first element and the second element are not directly con-
nected.

19. The computer-readable medium of claim 9, wherein the
first element and the second element are connected via a
nondirect feedthrough element.

20. The computer-readable medium of claim 19, wherein
the nondirect feedthrough element comprises an input and an
output, and wherein the nondirect feedthrough element does
not have a direct relationship between the input and the out-
put.

21. The computer-readable medium of claim 19, wherein
the nondirect feedthrough element includes at least one of a
group comprising:

a delay element; a pre element; a shift element; and a

memory element.

22. The computer-readable medium of claim 19, wherein
the nondirect feedthrough element includes a filter block.

23. The computer-readable medium of claim 9, wherein the
instructions further comprise instructions that, when
executed on the processor, cause the processor to define a
process by which the second attribute is determined.

24. The computer-readable medium of claim 9, further
comprising instructions that, when executed by the processor,
cause the processor to display an option to select a function-
ality that determines the second attribute responsive to the
mode switching event.

25. The computer-readable medium of claim 9, wherein the
at least one attribute comprises at least one signal attribute
that includes a signal dimension.

26. The computer-readable medium of claim 9, wherein the
at least one attribute comprises at least one signal attribute
that includes a signal data type.

27.The computer-readable medium of claim 9, wherein the
at least one attribute comprises at least one signal attribute
that includes a signal complexity.
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28. The computer-readable medium of claim 9, wherein the
at least one attribute comprises at least one signal attribute
that includes a signal sample time.

29. The computer-readable medium of claim 9, wherein the
at least one attribute comprises at least one signal attribute
that includes a signal invocation specification.

30. The computer-readable medium of claim 9, further
storing instructions that, when executed by the processor,
cause the processor to: selectively reset a state associated with
the at least one element in response to the determining the at
least one attribute.

31. The computer-readable medium of claim 9, wherein the
mode switching event includes an explicit event.

32. The computer-readable medium of claim 9, wherein the
mode switching event includes an implicit event.

33. The computer-readable medium of claim 9, wherein the
mode switching event is generated by at least one of a state
transition diagram, a discrete event diagram, a block diagram,
a dataflow diagram, sequence diagram, scenario diagram,
truth table, state transition matrix, entity flow diagram, queue/
server network, and function block diagram.

34. The computer-readable medium of claim 9, wherein the
first element includes at least one port, and wherein the mode
switching event is in response to a change in attribute of a
received signal associated with the at least one port.

35. The computer-readable medium of claim 9, wherein the
graphical model includes at least one of a time-based block
diagram, activity diagram, or a dataflow diagram.

36. The computer-readable medium of claim 9, further
storing instructions that, when executed by the processor,
cause the processor to: indicate that the at least one element
propagates the at least one attribute in response to the mode
switching event.

37. The computer-readable medium of claim 9, further
storing instructions that, when executed by the processor,
cause the processor to: receive a flag, the flag indicating that
the first element can process the mode switching event.

38. The computer-readable medium of claim 9, wherein the
first element includes at least one input port and at least one
output port, and wherein the first attribute is a dimension, and
wherein the computer-readable medium further stores one or
more instructions, that when executed by the processor, cause
the processor to:

receive a map defining at least one constraint, the constraint

identifying a dimension of the at least one input port, the
dimension used to determine a dimension of the at least
one output port; and

set the dimension of the at least one output port based on

the selected at least one constraint.

39. A method comprising:

operating a system represented by the graphical model in a

first mode having a first behavior;

receiving a mode switching event;

operating the system in a second mode having a second

behavior based on the received mode switching event;
and

operating, responsive to receiving the mode switching

event, the system in the second mode.

40. The method of claim 39, wherein the graphical model
comprises a first element having a first attribute and a second
element, and wherein the method further comprises:

associating the mode switching event with a first element

of the graphical model;

representing the first element;

representing the second element having a second attribute;

and

associating a mode switching event with the first element;
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determining, responsive to the mode switching event, the

second attribute to be consistent with the first attribute.

41. The method of claim 40, wherein determining com-
prises propagating the first attribute to the second attribute.

42. The method of claim 40, wherein the determining com-
prises solving at least one constraint associated with the first
and second attributes.

43. The method of claim 40, wherein the first element and
the second element are not directly connected.

44. The method of claim 40, wherein the second element
includes a nondirect feedthrough characteristic.

45. The method of claim 40, wherein the first element and
the second element are connected via a nondirect feedthrough
element.

46. The method of claim 44, wherein the nondirect
feedthrough element comprises an input and an output, and
wherein the nondirect feedthrough element does not have a
direct relationship between the input and the output.

47. The method of claim 44, wherein the nondirect
feedthrough element includes a delay block.

48. The method of claim 44, wherein the nondirect
feedthrough element includes a memory block.

49. The method of claim 40, wherein the determining the
second attribute comprises permitting the user to define a
process by which the second attribute is determined.

50. The method of claim 40, further comprising displaying
to a user an option to select a function that determines the
second attribute responsive to the mode switching event.

51. The method of claim 39, wherein the first behavior is
operable to permit the system to process a first set of condi-
tions by the system, and wherein the second behavior is
operable to permit the system to process a second set of
conditions by the system.

52. The method of claim 39, wherein the graphical model
comprises a first element including at least one input port and
at least one output port, and wherein the method further
comprises:

receiving a map defining at least one constraint, the con-

straint identifying a dimension of the at least one input
port, the dimension used to determine a dimension of the
at least one output port; and

responsive to a selection of the at least one constraint,

setting the dimension of the at least one output port
based on the selected at least one constraint.
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53. The method of claim 39, wherein the graphical model
comprises a first element having a first attribute, and wherein
code associated with the first element is responsive to the
received mode switching event.

54. The method of claim 53, wherein the code associated
with the first model is capable of propagating the first attribute
in response to the received mode switching event.

55. The method of claim 54, wherein the code is adapted to
propagate the first attribute during execution of the code.

56. A system comprising:

a memory configured to:

store information representing a graphical model,
the graphical model representing a modeled system,
the graphical model having a fixed model variable
access structure,
the graphical model including at least one element,
the at least one element having associated code that is
configured to:
make at least one attribute associated with a port of
the element consistent another attribute of the at
least one element or another element; and

a processor configured to:

execute the code,

and responsive to a mode switching event, defining the at

least one attribute to be consistent with the another
attribute.

57. The system of claim 56, wherein the system operates in
a first mode having a first behavior, and in response to receiv-
ing the mode switching event, the system operates in a second
mode having a second behavior.

58. The system of claim 57, wherein the mode switching
event is in response to a change in attribute of a received
signal associated with the port of the element.

59. The system of claim 56, wherein the attribute is propa-
gated through the at least one element or to another element.

60. The system of claim 56, wherein the fixed model vari-
able access structure is a fixed read structure.

61. The system of claim 56, wherein the fixed model vari-
able access structure is a fixed write structure.

62. The system of claim 56, wherein the fixed model vari-
able access structure is a fixed read and write structure.

63. The system of claim 56, wherein the fixed model vari-
able access structure is a fixed compile-time structure.

#* #* #* #* #*
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